JOURNAL OF COMPUTATIONAL PHYSICS 118, 356-365 (1995)

An Eulerian Vlasov-Hilbert Code for the Numerical Simulation of
the Interaction of High-Frequency Electromagnetic Waves
with Plasma

A. GHizzo, T. REVEILLE, AND P. BERTRAND

LAM.L, Université de Nuncy-1, 54506 Vandoeuvre les Nancy cedex, France

T. W. Jounsron

LNRS. Energiv et Matéricuy (Hnfnersitd o Quebec), Varemstes, 13X 1852 Caneda

J. LEBAS

LPALL, Universite de Nanev-1, 54500 Yandoewore les Naney cedex, France

AND

M. SHoucri

Centre Canadien de Fusion Magnétigue, Varennes, JIX 151 Canada

Received May 2, 1994; revised October 17, 1994

In order to handle one-dimensional spatial proeblems in plasmas
with very high frequency electromagnetic waves (w ¥ w,}, the 1 —
1/2D Eulerian Vlasov code has been modified to interface with the
ponderomotive force associated with the complex envelopes of the
high frequency electromagnetic fields rather than the fields them-
selves. The ponderomotive force for the Viasov code has been com-
puted from the complex amplitude equations and the real Vlasov
density perturbations have been converted to complex amplitude
form for the mode equations via the Hilbert transform. The resulting
Vlasov-Hilbert code allows us to handle high-frequency problems
with complex amplitude equations for high frequency electromag-
netic waves with the Vlasov code only for the relatively low-fre-
quency ptasma wave, Computations are made with this model to
situations typical of forward Raman scattering and beatwave; results
ara in accordance with other computational methods such as full
elactromagnetic Vlasov-Maxwell code or envelope equations
whenever they can be used. This mode! provides a saving of order
{eapumpl Wpasma P {i€., time X space} in computer time, as compared
with the direct full electromagnetic Vliasov-Maxwell method with
the highest space-time resolution required. © 1995 Academic Press, Inc.

I. INTRODUCTION

In recent years considerable plasma simulation [1-3] has
been done using what we have termed an Euler-Vlasov code
allowing unequalled precision in the examination of details of
the electron distribution function in action phase space (with
one longitudinal degree of freedom) for vartous plasma prob-

lems. An important application of interest is the beatwave
driven acceleration of electrons, for which the experimental
ratios of driver frequency to plasma frequency are very high
{wp/w, = 37 in Ref, [6] and ex/w, = 100 in Ref. [7]). These
high ratios impose a prohibitive computer burden on a direct
attack via Euler--Vlasov or paricle-in-ceil (P1C) simulation.
(The burden is doubly severe because an exact approach re-
quires spatial resolution of very small wavelengths, together
with the small time step required for the high driver frequency).

In this paper we discuss the implementation of a hybrid
solution to this problem. The full Viasov apparatus is used for
the longitudinal plasima wave aspect of the problem, but with
the addition of the ponderomaotive force driver, which is itself
obtained rom complex amplitude (i.c., complex envelope) cou-
pled wave equations for the electromagnetic driver waves (and
any other important electromagnetic sidebands). The time step
is thus only a fraction of a plasma period and the spatial resolu-
tion is a fraction of the light plasma wavelength, Given complex
electromagnetic wave envelopes, the calculation of the real
ponderomotive force required by the Viasov electrostatic code
obviously presents no difficulty. The innovation here (at least
for plasma simulation applications) is in the calculation of
the complex amplitude envelope of the plasma wave which is
required at each time step for coupling with the driver waves and
which must reflect just those plasma aspects (such as nonlinear
detuning and energy transfer of energy to the electrons) which
are the reason for interest in the problem in the first place. For
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the generation of the complex envelope of the plasma wave
we use the spatial Hilbert transform. For this reason we refer
to this hybrid system as a Vlasov—Hilbert (or VH) code,

In passing we note that the technique can of course be applied
to a PIC system. Although the (usually significant) PIC noise
may cause some problems, the potential of PIC codes in two
or more dimensions would seem to make such an effort worth-
while.

Until now this Hilbert transform has been used in some of our
previous Euler—Vlasov code results [5] as a simple diagnostic to
aid comparison with theory. While Vlasov or PIC codes can
of course furnish full space-time detail (vsually in space snap-
shots) for fields, currents, and densities, this is often in a form
that has too much detail to improve understanding (an example
of the phenomenon characterized as *‘trying to drink from a
firehose’"). The common coin of theory is in fact the complex
amplitude as used in mode-coupling theory. A very useful
bridge between simulation and theory is thus provided by the
time evolution of the complex space envelopes calculated from
spatial Hilbert transforms. [t was the success of these compari-
sons, together with the noiseless character of the Euler—Vlasov
code, that led us to the Vlasov—Hilbert method.

In this paper we present three examples of the use of the
Vlasov—Hilbert code, together with two types of comparison,
on the one hand with the full Vlasov code (where the frequency
ratios permit) and on the other with the conventional coupled-
mode results.

The presentation of this work is as follows. In Section II the
Vlasov—Hilbert code is discussed, as well as some comparisons
between the model and a full electromagnetic Vlasov code,
together with a simple nonlinear three-wave envelope model
{which includes linear loss and approximative relativistic detun-
ing). The simplest case of a periodic system is considered in
detail in Section III, including the check of the conservation
of the Manley—Rowe invariants. Then, in Section IV, the model
is applied to a system which is not spatially periodic, with
externally incident beatwave drivers at modest value for the
pump wave frequencies (close to @y = 2.60w, and wy = 1.53w,)},
allowing close comparisen between the Vlasov—Hilbert model,
the Maxwell-Vlasov model and the canonical three-wave
model. Section V contains an example of high-frequency beat-
wave (wy, == 30w,) using the Hilbert—Vlasov code and compari-
son with the coupled-mode model. Finally in Section VI, we
present the major conclusions.

II. THE RELATIVISTIC VLASOV-HILBERT CODE

(A) The Full Electromagnetic Vlasov—Maxwell Code

First, let us recall briefly the main features of one-dimen-
sional electromagnetic Vlasov—Maxwell code. In order to han-
dle the plasma velocities relevant to future particle accelerators,
the model equation must at least be relativistic in the accelera-
tion direction (x). For the linear { y-direction) laser polarisation
intensities we consider here the transverse dynamics can be
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economically included in the nonrelativistic transverse cold
fluid approximation. The Vlasov equation in the acceleration
{x) direction is thus

of  pdf of
Sy gp +up)L = 1
Fri—rn elE + u,B} a0 (1)

where y = V1 + p}/m’c?. Defining P,{(x, t} = mu, as the non-
relativistic fluid transverse momentum, we have in the y di-
rection;

aP,
—. = ek @)

The electrostatic longitudinal self-consistent field £, obeys the
Poisson’s equation with ions forming a fixed neutralizing back-
ground #y,

T _ 2 ey — ), 3)

axt e
where n.(x, t) is the electron density defined by

nx.0y = [ fe po 1y dp.. @

The transverse electromagnetic field of course obeys Max-
well’s equations:

o8, JdE,
ot dx ©)
JdE, aB, I,
= PR J, 6)
ot ax &
where J, = —en,(x, Hu,(x, 1.

Defining E= = E, * ¢B,. Egs. (5) and (6) can be rewritten
in a more suitable form

gy
(£+ci)E*:——' (7
ot ax Ep

which enables the solution of Maxwell’s equations along their
vacuum characteristics x = ¢t = const (see [8]). Hence we
have to prescribe the boundary conditions on E*(¢) at-x = 0
and E™() at x = L, where L denotes the length of the system.
In the present simulations, we have considered

Ftx=0,n= \/EEO sin wyt + \/EEO sin @t

. (8)
Ex=Ln=0,

corresponding to a radiation field entering the plasma at x =
0 and exiting at x = L.
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(B} The Viasov—-Hilbert Code

To handle the problem of high frequency electromagnetic
waves (for which full detail would require calculations over
very short intervals in time and space), we replace the Max-
well’s equations for transverse waves by a three-wave model
coupled to the Vlasov equation. Only envelope equations for
the pump and idler (Stokes) are considered here. Assuming the
vector potential A, of the electromagnetic wave in the form

Ay (x, 1) = BAg(x, ne'e ™ + §A,(x, el + ce, (9)

where 0 and | refer, respectively, to the electromagnetic pump
components of the wave vector, the envelope equations for Ag
and A, can be written with wy = @, + @, and ky = &k + £k,
{w,, k, being respectively the frequency and wave number of
the electron plasma wave) as

(gx + v, %) Ag=— 4ZiDA1p¢ (10a)
(i + 1, i) PR (10b)
at L ox dong
where
Ny, p = 3p,(x, De'** 4D + ¢ c. (11)

denote the unperturbed homogenecus electron density and the
perturbed density, respectively. p, is given by the Hilbert trans-
form of the density perturbations from the Vlasov code. The
group velocities are the standard values for electromagnetic
waves in plasma (with i = 0, 1, we have v, = (1 — w}/w)"c).
The Vlasov equation used in the Hilbert—Vlasov model is

a x d
F ¥ gt renyL=o,
gt mydx ap,

(12)
where F(x, £) = (eX/2m)(9(A%)/dx) is the ponderomotive force.

Both Vlasov and envelope equations are integrated using a
time-splitting scheme of the wsual kind. The different steps
used for integrating the Vlasov and envelope equation are indi-
cated in Fig, 1.

A three successive shifts sequence is used to evolve the
electron distribution function f and slowly varying complex
amplitude for Ag, from 1, = nAt to t,4y = (n + DAr

Step 1. Between ¢, and £, shift in the x direction for a t_ime
A2,

. At
f(x:pxa t;+l,’2) =f(x - p _’pXﬂ tﬂ)! (132[)

my 2

together with
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THE VLASOY EQUATION

S

HILBERT TRANSFORM

PONDEROMOTIVE FORCE
FOR PLASMA WAVE ENVELOPE

N

J

FIG. 1. Global scheme of the Vlasov-Hilbert code: The scheme summa-
rizes the interesting possibility of handling high-frequency beatwave problems
with complex amplitude equation for pump, idler (Stokes}, and using the Vlasov
equation for the relatively low-frequency plasma wave.

ENVELOPE EQUATIONS
FOR PUMP AND [DLER WAVES

Ailx, tran) = Aoy(x — wy B2, 1,). (13b)

Step 2. Compute the longitudinal field E, at time ¢,
using Poisson’s equation and then the real perturbed density
glx, ) = (n.(x, ) — my)/n,. The integration of the envelope
equation involves knowledge of the complex amplitude of
plasma mode p, at time ¢,.,,. The complex envelope curve for
the rapidly oscillating phases is obtained by using a spatial
Hilbert transform of the mode, effected as follows: The signal
g if Fourter transformed, and the positive & modes are multiplied
by +i, while the negative & modes are multiplied by —i. The
resulting function is Fourier transformed back guipes, Wwhich
results in a Hilbert transform. Then the complex amplitude p,

is given by the relation p,(x, H = a(x, t)e"™ with a(x, 1) =
Vg? + ghmer and the phase yix, 1) obeys tan i = gu/g. We

compute the envelope equation at time .41, as follows:

Aolx, 5 10) = Aglx, L)

i At
— —— A, )P, trni) (14a)
4eyrg
Adx, 1) = A, )
i 1AL
— 20 A e (). (14D)
4nny

The real ponderomotive force for the electron Vlasov equation
is then calculated using the relation

LRS!

Foe = 2m dx

(15)

2
= £ ik, AgA¥ exp itk,x — w0 + c.c]
4m
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which allows us to compute the electron distribution function

at time 17, (by a shift in the p, space for a time Af) and

we obtain

Fl pes tan)
= flx, pe — (—eEX' + Flx, t700)AL £00].

(16)

Step 3. Between 1, and t,+, we shift again in the x direction
for a time At/2:

P Ar
f(X,sz tfﬁ") :f (-x - my E&p.t! I!J!r+ll2) (lTa)

A, ) = Aglx — Yeur A2, p). {(17b)

The boundary conditions for the electromagnetic amplitude are
then given by

Eﬂgpmﬁ]e(t)
Afx=0,L) = —— 18
alx ) mY; (18a)
Afx=L,5=0 (18b)
Eﬂé:pmﬁle(r)
Agx = 0, ) = —=eetie” 18
olr ) wu\fi (15
Alx=L =0, (18d)

where the initial increase in time 7 of the electromagnetic waves
to a constant vajue is modeled by the function &..q. given by

sin¥(me2n) fr=rt

1
1 ift=r (19)

gpmﬁ]e(t) = {

The simulation is done as long as the launched electromag-
netic waves do not reach the other boundary; this explains
relations (18b) and (18d).

(C) The Three-Wave Model

Because we wish eventually to make comparisons between
results given by (i) the full electromagnetic Vlasov—Maxwell
model, (ii) an envelope three-wave model, and (iii) those ob-
tained by a Vlasov—Hilbert code and to discuss action conserva-
tion, we Tound it convenient to develop also a three-wave code.
Together with Eqgs. (10a) and (10b), which describe the evolu-
tion of electromagnetic modes, the plasma mode must be also
taken into account. We recall for reference that in the fluid
model, the plasma mode is generated by the resonant coupling
between both pumps and is described by [4]

d F;] iezkfno
-t —+ - -6“ 12 e = By A A*,
(ar ¥, oy ¥ = iBalpd| ) P Amm, ¥

(20}
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where the relativistic correction has been retained in the plasma
wave envelope equation through the term &, = 3wl/8kicn}
and v, denotes the electron fluid plasma wave group velocity
Ve, = 3k vi/w,, v, being the clectron thermal velocity. Equa-
tions (10a), (10b), and (20} are also integrated by using a
splitting scheme.

II1. SIMULATION RESULTS AND THE MANLEY-ROWE
ACTION RELATIONS

In a recent publication using periodic geometry treated in
Ref. (4], we have applied the Manley—Rowe action relations
to the problem of SRS in the forward direction, as simulated
by the Eulerian Maxwell-Vlasov code in periodic geometry.
The action sum of the pump and the scattered SRS wave was
well conserved, while the action loss between the pump and
plasma wave was shown to be well accounted for in detail by
examining the electron energy for electrons above the lower
trapping boundary (separatrix) in the x — p, phase space. Thus
the utility was clearly demonstrated for using action conserva-
tion to separate the effects of three-wave interaction from those
due to nonlinear particle-wave interaction. These simulation
results on action evolution are now compared with the solution
given by the Vlasov—Hilbert code in the case of the SRS insta-
bility. First recalling the necessary definitions from the previous
Euler--Viasov code work [4].

In the three-wave parametric decay from the pump wave
“{)" to the scattered wave *‘s”” and the lossy electron plasma
wave ‘‘e,”” we have, as usual,

ki=k + &k, aky) + Ao = adk) + wlk). (21)
{(We assumed perfect k-matching—since we have a periedic
simulation and match mode numbers exactly—while Aw/w, <€
1 contains the mismatch). The complex action density ampli-
tudes were defined as

Eotig 142 Eq, 142
an=(—2) Ao, as=(2) A
_.(w, 2 p,
%" \2e) ko,

With this definition, the action density S (=aa*) is then given
from the energy density W (in SI units) by (see [4])

(22a)

(22b)

W (Energy density},
S = == = _—M — ™M - .—_—-—
ad w w

=L ot + 0B (225) s
o [ S5\ e '

The envelope equations (10a) and (10b) for Ay, A, become then
for ay, a, (as previously mentioned in Ref. [4])

(23)
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L DA ” B
ot g, ax a4y = a.a.e (24a) Agme
0.016
9 + ¥, 9 a, = Dagake 2 (24b) 0.012
&t Sax) o
0.008
with 0.004
0
€ kewp
=7 24¢
2m (2eswom @)’ @49 0016
On dropping the 4/9x envelope terms, as one can here for this ociz
uniformly excited spatially penodic case, we obtained the usuat 0.008
action sums, including loss,
0.004
W, W, 0
Co=Sp+ 8. =|af + |aff=—=+==C(t=0) (252
L0 o,
0016
W, W,
C{ =8y + S, = laf + |aft = 59 + = 0012
0 (3
2y [+ 0.008
=cu=0-=2 [warar. (25b) oo
Since the velocities are normalized 10 ¢, and the frequencies ¢
to w,, while the electromagnetic pump mode wavenumber was 0 100 200 300
t(.l)r

chosen as 8Ak (Ak = 27/L being the fundamental mode), the
choice of k= 2k,, 2k,) in effect determined the length of
system L in terms of c/w,. For our plasma temperatures
(a two-component plasma was used)} a good frequency match
was obtained by choosing kyc/w, = 2.40 (and so kc/w, =
k.clw, = 1.20}. The corresponding frequencies are then w, =
2.60w, and w, = 1.534w, respectively for pump and Stokes
mode, while the plasma frequency is ., = 1.061w,, giving a
frequency mismatch of Aw = wy — @, — w, = —0.02w,.

The time behavior of the action densities Sy, S, from Vlasov—
Hilbert simulation are shown together with their sum C, =
So + S, in Fig. 2a. The corresponding figures obtained for the
full electromagnetic Vlasov codes, shown in Ref. [4], are not
presented here. However, the Vlasov—Hilbert results obtained
here are in excellent agreement with those Vlasov-Maxwell
resulis presented in [4]. As expected, the action sum C; for
undamped electromagnetic wave pair is exactly conserved, indi-
cating that the treatment of the pump and idler waves in the
VH model is correctly effected, since the invanant C; is well
conserved, in agreement with the results obtained by the full
electromagnetic Vlasov simulation.

In Ref. [4] we have shown that the way to isolate the
interaction between the plasma wave interaction with the
trapped electrons is to consider the action sum of the pump
and plasma wave. These quantities are shown in Fig. 2b.
As previously observed in the full electromagnetic Vlasov
code, the action sum C, has a more complicated behavior
due to the details of electron trapping, even reversing as the

FIG. 2. The time behavior of the pump (5;) and idler (5,) action densities
from the Vlasov—Hilbert simulation, is shown in (a}, together with their sum
€, = 8 + §,, in the case of a periodic system. As expected, the action sum
C, for undamped electromagnetic wave pair is exactly conserved, given good
agreement with results obtained in the full electromagnetic simulations, We
have pletted in {b) the time behavior of pump (S,) and plasma wave (§,) action
densities, together with their sum C, = §, + S., which presents a strong
decrease al time fw, = 200. The action transfer is taken into account in
{c}, by considering the “‘lost action’’ of particles above the trapping separatrix
limit.

plasma wave is decreasing while the pump wave is growing
from its minimum value. This interesting feature has been
already observed in the full Vlasov code results (thus the
treatment of the electric field envelope via the use of the
Hilbert transform and of the ponderomotive force in the
Vlasov acceleration term do not modify the particle accelera-
tion process). To check this point in detail and by using the
trapping separatrix boundary, one can account for the energy
in trapped and accelerated electrons. This energy, divided
by the plasma oscillation frequency, gives what is defined
as the “‘trapped electron action.’’ Figure 2¢ shows that the
sum of the pump wave action, the plasma wave action and
the trapped electron action is nicely conserved. This result
makes it clear that the Vlasov—Hilbert model can describe
correctly the electron trapping effects and that for this periodic
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TABLE I

Pump wave (0)  Pump wave (1) Plasma wave

Freqguency wy = 2.60w, wy = 1.534w, w, = 1065w,
Wave number kot ki k.
— =240 —=1.i64 — = 1.236
. " w5, Wy
Quiver or phase Vose, Vi, o, 0.861
. — e v,=—=0.861c
velocity " 0.087 " 0.147 Tk

case the Vlasov—Maxwell and the Vlasov—Hilbert analyses
are in complete agreement.

IV. STUDY OF THE BEATWAVE EXPERIMENT:
COMPARISON BETWEEN THE THREE
NUMERICAL CODES

‘We now turn to a more realistic causal test, with an externally
incident driver and idler pair with the same frequencies as
before.

(A) Numerical Envelope Calculations

A series of simulations were performed in the case of a
low-frequency beatwave accelerator. Two laser beams with
frequencies wy, = 2.60w, and @, = 1.562e, have been injected
in plasma with equal amplitude Ey/ V2 with £y = 0.320wmc/
e. The incident electromagnetic wave (wy, ky) and (w,, &}
{corresponding to the pump waves), continuously generated
at x = 0 drives inside the plasma, a forward-going electron
longitudinal plasma wave (w,, k) according to the matching
conditions w; = @; + w, and k, = k; + k.. The simulation
parameters are summarized in Table 1.

We start with an initial homogeneous Maxwellian plasma
{of length L = 128A,, Ay being the wave length of the pump
wave) and with a thermal velocity #/c = 0.17133 correspond-
ing to a temperature of 7, = 15 keV, with a small fraction (o)
of relativistic particles with temperature 7, = 100 keV (see the
numerical experiment described in Ref. [4]),

o p.t=0)=

(1— ) ( p? )
L exp| -
V2amT, 2mT,
(26)
+ aKexp(—z(y — 1))
with e = 0.05, z = mc¥/Ts, and K = (V7/4T(312)) (zexp(—2)/
Ki(z)is the;;ormalization constant for a relativistic distribution
such that [~ f(x, p., 1 = 0) dp, = 1 (where K,(7) is the usual
Bessel function of the third kind). The plasma wave number
1$ k.c/w, = 1.236 which corresponds to k.A, = 0.212.

The envelopes of the different modes of the rapidly oscillat-
ing fields can be obtained in a similar way as in the simulations
reported in Ref. [5]. At a given time, the signal is Fourier
analysed and thereafter a Hilbert transform is performed, which
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yields the envelopes of the fields. Figure 3a shows the Hilbert
envelopes of the pump wave and idler wave (in action units),
computed in the Vlasov—Maxwell code at time tw, = 200 while
Fig. 3b shows the results obtained by the Vlasov—Hilbert code,
at the same time, using the same initial condition.

The corresponding results given by the coupled mode equa-
tions (10}, (11), and (20} are represented in Fig. 3¢ in which
we have taken a damping term -y = 0. It is clear that the general
features are well reproduced. The major part of the structure
in the idler wave is seen to be due to the pump depletion,

Figure 4a and Fig. 4b illustrate respectively the spatial varia-
tion of the longitudinal electric field obtained by the Vlasov—
Maxwell code and the Vlasov—Hilbert version; together their
envelopes are given in action units at the same time. The maxi-
mum amplitudes of the waves from both kinetic simulations
are roughly the same. There are, however, some distinct differ-
ences in shape, indicating dephasing in time. One can see a
distinct trend for the Vlasov—Hilbert model to produce some-
what more localized and intense peaks in electrostatic field

Spw S
n(:-n :z pump wave 0 _JLn;mci pump wave L
0.010 0.028
0.008 Viasov-Maxwell 0.024 (@)
model
0.006 0.018
rcnp=200 Imp=200
0.004 0012
D.002 0.006!
g 0
0.010 0.028
0.008 Vlasov-Hilbert 0.004 ®)
maode} '
0.006 0.018
0.002 0.006
0 0
0.028
0.010 (e
envelope model 0.024
0.008 !
0.006 0.018
0.004 0.012
0.002 0.006)
0 ) 0
0 300 200 300 400500 0 10C 200 300 400500
0, fc xw, ¢
FIG. 3. (a) Envelope of pump waves, computed from the solution of

the Vlasov—Maxwell code using a Hilbert transform at time tw, = 200. (b)
Corresponding results obtained by the Vlasov—Hilbert model in which the
Maxwell equations have been replaced by envelope calculation for pump waves.
(c) Corresponding results in the case of a three-wave model in which the
plasma wave has been described by envelope equation without damping term.



E, ELECTRIC FIELD so,
mee, nyme’
0.14 0.008 Vlasov-Maxwell
0.07 .006 model
0 0.004
007 0.002
0.4 0
0.14 0012 ® Vlas:g:llben
0.07 0.009 ‘
0 0006 |
-0.07 0003 |
o | 0
D 100 200 300 400500 004 (©) envelope model
o, ¢ 0.03 ﬂ
0.02 ‘i‘
001 |
0

C 100 200 300 400500

xa,fc

FIG. 4. The longitudinal electric field at time fo, = 200 in the case of
the Viasov—-Maxwell code, together with its envelope given in action units is
plotted in Fig. 3a as a function of space, while the corresponding values given
by the Vlasov—Hilbert version are shown in Fig. 3b. The electric field obtained
by the three-wave model, without a damping term is shown in Fig. 3c.

amplitude than the Vlasov—Maxwell code, at least for these
early times. A significant difference between both Vlasov mod-
els and the coupled-wave model result can be seen in the level
of the plasma wave. We show in Fig. 4c the plasma wave
computed by the fluid model. This difference in mainly caused
by the wave—particle interactions that occur in both Viasov
simulations. Figure 5 illustrates that the results obtained by
increasing the damping term to a value of vy = 0.0093 lead to
a strong decrease (by a factor 2 in action units) of the amplitude
of the electric field, but it most be pointed out that a strong
simoothing in electromagnetic mode shapes is occurring in this
case, which is not observed in either kinetic simulations. As
we have already seen in previous work (5], “‘ad hoc’” damping
chosen after the fact, is not 4 substitute for a real understanding
of particle trapping loading of the plasma wave. Even more
noticeable is the fact that the spatial advance of the electric
field for both Vlasov models is much slower than for the
coupled-wave model. It seems likely that the coupled-wave
dephasing at the entry is an underestimation, leading to
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incorrectly rapid pump depletion at the entry and, hence, a re-
duced ability to stimulate plasma waves further from the en-
try point.

(B) Phase Space Representation

In Ref. [2], we have shown that our Maxwell-Vlasov code
is able to give a precise description of the phase space dynamics
that is capable of resolving the finest mechanisms of particle
acceleration. In Figs. 6a and 6b are shown electron phase space
plots at the time tw, = 200 for the beatwave-driven plasma
wave as modelled by the Vlasov—Maxwell and Vlasov—-Hilbert
models, respectively. While not identical, the reasonably close
correspondence of the two phase space results is highly encour-
aging.

The separatrices calculated by Eqs. (24) and (25) of Ref. [4]
are also drawn. We recall that the separatrix momentum can
be easily calculated from the potential obtained from the output
of the code. The resuit given by the Vlasov—Hilbert model is
shown in Fig. 6b. The grey shade indicates the magnitude of
the particle distribution function f(x, p,). The solid curves mark
the separatrix between the trapped and untrapped particle orbits
for the local amplitude of the plasma wave. Although there are
some small differences in the behavior of longitudinal electric

0.010 Envelope model

S, 00075 Pump wave §

nymc
0.0050

0.0025

0.030
Se pump wave 1

2
Ry

0.024
0016

0.008

S 0.024 Plasma wave
mWmet 0018
Q.02

0.00&6

0 100 200 300 400500
xw, fc

FIG.5. Both pumps and plasma wave envelopes calculated from the three-
wave model, in which the damping term of plasma wave has been chosen to
y = 0.0095.
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10
» (a} Vlasov-Maxwell model fw, = 200
me
5
0
0 A42.5 85 1275 170
x@, fc .
10 .
P, Viasov-Hilbert model
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FIG. 6. The phasc space representation at time tw, = 200 computed by
the full electromagnetic Vlasov—Maxwell code is shown in (g}, together with
the separatrices, which mark the boundary between the trapped and untrapped
particle orbits for the local amplitude of plasma wave. The corresponding phase
space representation for the Vlasov—Hilbert version, in which we have replaced
the Maxwell equations by envelope calculation, is plotted in {b); the particie
dynamics seems to account rather well for the complex behavior scen in the
full electromagnetic simulation.

fields, the particle dynamics in phase space calculated by using
the Vlasov—Hilbert code seems to account rather well for the
complex behavior seen in the full electromagnetic simulation.
We can see a very striking agreement between the separatrix
and the *‘particle orbits’” in both cases, The spirals inside the
separatrix implicitly reflect the history of the particles trapped
as the plasma wave was built up from zero.

V. AN EXAMPLE OF INTERACTION OF
HIGH-FREQUENCY ELECTROMAGNETIC
WAVES WITH PLASMA

The final example, given to illustrate the real possibilities of
this Vlasov-Hilbert code, is the beat of two very high-frequency
eleciromagnetic waves in plasma, in order to analyze the parti-
cle acceleration process comparable to that recently observed
in experiment [6]. For economy in this demonsiration our pump
rise times are chosen to be faster than the experiment. We
simulated a beatwave process using pump frequencies of @y, =
3001w, and w, = 28.96w,. The other numerical parameters
are presented in Table II. Here the code is in a regime so
extreme that we can only compare it with the mode coupling
results due to the fact that the full Vlasov—Maxwell computer
burden is prohibitive for electron kinetic effects.
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As before, for the numerical experiments presented in Section
IV, the plasma was chosen with two electron temperature comn-
ponents, the majority (95%) component with a 15 keV tempera-
ture, and a minority component (5%) at 100 keV. (The cold
temperature was chosen high enough for electron damping to
subdue the usually rapidly growing, but here unwanted, back-
ward Raman instability, while the hot component was enough
to ensure sufficient electrons to start the electron trapping and
acceleration which is relevant to beatwave acceleration, without
any initial beam-plasma instability). Using an action space grid
NN, = 2048 X 1024 = 2,097, 152 points, the CPU thme on
the Cray-2 computer is 1 us per time step per grid point, i.e.,
about | h CPU time for a run time up to 500w, . For a plasma
length L = 500 c/w,, the grid size is Ax = 0.293 cfw, (the
time step is then fixed by the choice of Ax = cAr, the condition
used to start up the instability in the Eulerian Viasov simu-
Jation).

Now we present in Fig. 7 the pumerical results obtained
from the Vlasov--Hilbert code, at time fw, = 400. The figures
show the envelope of the pump wave (Fig. 7a) and its corre-
sponding second pump wave (Fig. 7b) in action units, together
with the longitudinal electric field (in Fig. 7c¢) and its corre-
sponding envelope (in Fig. 7d). At that time the penetration of
the electromagnetic pump and the nonlinearity is sirong enough
tor the three modes to be present. After the first stage of the
instability (the first left-hand structure observed in the electric
field is probably due to a too-rapid growth of the pump laser
intensity in plasma), the curves exhibit the beginning of the
well-known Rosenbluth-Liu oscillatory behavior in which the
energy is transferred back and forth between the pump, the
idler, and the plasma waves. Comparing these numerical resulis

TABLE N

Beatwave Experiment Parameters

Pump wave number {0) ke 30
w, -
P ¢ ber (1 k
ump wave number (1) ke 28.952
oy

Plasmion wave number ki
P 1.04790 or k, Ap = 0179

Pump wave frequency () wg = 300w,

Pump wave frequency {1} w, = 28.96w,
Plasmon wave frequency w, = 1.0472%w,
Electron temperature T = 15keV
Plasmot phase velacit v, o,
P ¥ == = 009933
Corresponding phase momentum Pe _ R - 2716
e T — pifat .
Pump quiver **velocity’” (0) Posc, C
— = (L0999
. me
Pump guiver *‘velocity’” (1) Pos:,
— = 0.1035
me
Plasma relative density ",
— = 0.0011

Fecic
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FIG.7. The envelope of high frequency pump wave is shown in (a}, while
the lower frequency pump wave envelope is pletted in (b} in action units, at
tise 1o, = 400, in the case of high-frequency electromagnetic beatwave ob-
tained from kinetic VIasov—Hilbert simulations. The corresponding longitudinal
electric field is plotied in (c), together with its envelope in action units, showing
that the major part of the structure formed is seen to be due to pump depletion/
plasma wave building cycles.

with the case of the coupled modes model shown in Fig. 8
(without a darmping term) shows similar typical phenomena. It
is clear thai the general features are well reproduced, except
for the amplitude of the electric field action, due to the fact
that kinetic effects are not correctly taken into account in the
envelope model. The plasma waves are running waves rather
than standing waves, so these localized fields are not cavitons,
but a more complex result of interaction between the laser
pump, the laser idler wave, and the plasma wave. Support of
this concept is shown by the fact that similar behavior is seen
in coupled mode theory, as shown in Fig. 8.

As remarked at the outset, this method provides a saving of
the order (@ @paws)’ in computer time, as compared with
the direct Vlasov method with the highest space-time resolution
required. Due to the Courant condition Ax = cA¢, and the high
frequency of the pump wave (wy = 30w,), the same simulation
resuits shown in Fig. 7 would require about 900 h CPU time
on a Cray-2 computer using a full electromagnetic Vlasov
code, to be compared with the results obtained by the Viasov—
Hilbert code.

A limitation of the model in the present case is that cascade
processes (i.e., including more sidebands in the envelope equa-
tions) are not taken into account here, while recent simulations
[9], including relativisiic Vlasov—Maxwell and supporting en-
velope and test particle calculation have shown the possibility
that a second Stokes wave may be excited, if the plasma is
sufficiently underdense. The energy transfer to the plasma wave
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is then enhanced by the decay of the Stokes wave. Furthermore,
strong depletion of the Stokes wave caused by the down-cascad-
ing to the second Stokes component has been observed in
Vlasov simulations. An effort to take into account the down-
cascading process in the Viasov—Hilbert model (by adding the
necessary cascade modes) is well in hand, and these results
should be reported in due course.

VI. SUMMARY AND DISCUSSION

In order to be able to treat the problem of high-frequency
electromagnetic waves interacting with a plasma via beatwave-
induced plasma waves, we have investigated the replacement
of cur previous 13D Vlasov code with full details for both the
transverse and longitudinal aspects of the Maxwell equations
{which we have now named a Vlasov-~-Maxwell code) with the
much less burdensome option of coupling a longitudinal Vlasov
code with the ponderomotive force generated by the beating
between the transverse waves (which are treated by usual the
slowly varying envelope approximation); this code we have
called the Vlasov—Hilbert code.

We have tested this new code in three problems. In the

%ﬂ‘:} 0.10 plimp wiave 0
0.075
0.050
G.025
0
;S‘EL 012 pump wave 1
W 09
0.06
0.03
0
S, goza Plasma wave
nyme 0.018 Envelope model
0012
0.006
o |
0 200 400 600
X, [c

FI1G.8. The corresponding envelopes of pumps and plasma waves obtained
by the three-wave model, in which the damping term has been chosen to zero.
It is clear that the general features are well reproduced although the amplitude
of the electric fteld is stronger in comparison with the Kinetic simulation.
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simplest case, that of a spatially periodic initial value case, we
find the two Viasov codes to agree very well and to exhibit the
same differences of each with respect to the coupled-oscillator
model. In the case of a spatially open system with external drive,
while the same statement is generally true, we begin to see some
modest but noticeable differences between the two kinds of Vla-
sov codes which are, however, still much closer to each other
than to the coupled wave model. (We suspect, but have yet to
demonstrate, that the difference hetween the two Vlasov codes
will be less if the driving wave onsets more slowly.) At high
frequency, where the VIasov—Maxwell code can no longer be
used, the differences between the coupled wave and the Vlasov-
Hilbert code are of the same character as before, and we expect
that the Vlasov—Hilbert code is doing a good job of imitating the
Vlasov—Maxwell code at s55 of the cost.

In recent beatwave experiment the electron temperature is
lower, close to T, == 20 eV. However, envelope equations corre-
sponding to backward Raman scattering can be included in our
code without difficulty and numerical results concerning beat-
wave experiment with beaminjection will be presented in a future
work. We have also begun to look into cascading (i.e., inciuding
more sidebands in the envelope equations) and will be consider-
ing stimulared Brillouin scattering [10-11] (probably with ion
kinetics and an electron kinetic fluid) and the effects of ion motion
in the nonlinearity of coupling between plasma waves [12-13].
However, it should be noted that in the experiments of Ref. [7]
the plasma scattering (via the modulational instability) in all di-
rections over a great range of wavenumbers played an essential
role, so a realistically useful simulation would have to await an
extension to at least two spatial dimensions.

There seems no reason not to try this technique with a parti-
cle-in-cell (PIC} code, although the particle noise may pose a
problem in producing a reasonable envelope for coupling to
the high-frequency transverse modes (spatial filtering may
help). The real reward would be if one can generalize a PIC-
Hilbert technique to two spatial dimensions, which is liable to
be costly for the Vlasov—Hilbert part of the code, because one
must calculate a forbiddingly large fraction of phase space with
very low eleciron density.
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